
Internship report

Émile Trotignon

September 1, 2020

Introduction

The problem

Figure 1: Sampled mesh of a woman’s head

Sampling a surface with evenly spaced-out points is a very useful task in a
lot of 3D modelling software, for instance physics simulations or rendering.

Tools to perform this task already exist, but they require a well-defined
surface that is topologically correct (i.e. perfectly closed, and with no arti-
facts such as self-intersection). My goal during this internship was to explore
more robust ways to perform sampling, that would have fewer requirements
on the surface: we wanted to be able to sample a surface with defects such
as self-intersection, or some holes in it, or even a triangle soup, with the
constraint that the imperfect surface is an approximation of a topologically
correct surface.

Our approach in this internship was to use winding numbers, a technique
to robustly and efficiently determine if a point is inside or outside a surface.

1

Figure 2: Meshes with defects. The rabbit on the left is a triangle soup, and
the hotdog has the indicated defects.

Winding numbers

The principle of the winding number is to provide a way to mesure if a point
is inside an oriented curve in the 2D plane. 3 It is an important and classic
object of study in various fields such as algebraic topology, or vector calculus
[Wik20b], but its use in geometrical processing date from a 2013 [JKS13]
article generalising it for 3D meshes (i.e. a collection of vertices, edges and
faces that define the boundary of a 3D shape).

Figure 3: Winding numbers exactly segment inside and outside for concave,
high-genus, inverted and overlapping curves. Multiple components are also
naturally handled. Figure from [JKS13]

Definition [JKS13] :

“The winding number is the signed length of the projection of a
curve onto a circle at a given a point divided by 2π. Outside the
curve, the projection cancels itself out. Inside, it measures one.”

If the curve in 2D is perfecly closed, the winding number will be 1 inside
the surface, 0.5 on the curve itself and 0 outside it.

2

Figure 4: Winding number field of partial circles. Figure from [JKS13]

If the curve has holes, the winding number take values between 0 and 1
in the region around the hole. The winding number field is harmonic (i.e.
twice continuously differentiable) everywhere except on the curve, as shown
in figure 4.

It is possible to take an imperfect curve and repair it by defining the
repaired curve as the isocurve at 0.5.

In 2013, an algorithm for efficient computation of the generalized winding
number of a point with regards to a 3D mesh was published [JKS13].

A faster algorithm that works on arbitrary triangle soups and sets of
dipoles (here, a dipole is a position and a normal) was published in 2018.
[BDS+18]. This was made possible by noticing that the effect of a single
triangle on the winding number field is similar to the effect of a dipole on an
eletro-magnetic field: if there are a lot of small dipoles close to each other,
the isosurface of the field will be very intricate, but from afar, the effect of
the set of dipoles will be similar to the effect of a single, bigger one as shown
in figure 5.

With a tree data structure that groups close elements together, this
allows to compute the winding number of a triangle soup very efficiently.

The algorithms from these two papers are implemented in a library called
libigl [JP+18], which I used to perform the computations.

Since the winding number has value 0.5 on the surface, what we want to
sample is the isosurface at 0.5 of the winding number field.

1 Density sampling approach

Our first approach sampling a surface was to use an algorithm called Lloyd’s
relaxation.

1.1 Lloyd’s relaxation

Lloyd’s relaxation is an algorithm that distributes a set of points evenly
inside a section of the plane, or a section of 3D space.

3

Figure 5: A cluster of 20 dipoles has an intricate winding number field
nearby (left), but far away their function is quite tame (middle) and well
approximated by a single, stronger dipole (right). Figure from [BDS+18]

It works by computing each point’s Voronoi cell, and then advecting each
point to its cell’s centroid. After repeating this step multiple times, the set
of points converges to an evenly spaced distribution.

Here, evenly spaced means that for V the point cloud and D the domain,
Lloyd’s relaxation gives you a new point cloud V ′ that minimizes the function

V →
∫
D
d(x, V)2dx

where d(x, V) is the distance between x and the closest point of V .[Llo82]
Its behavior can be tuned by considering that the cells do not have

homogeneous density, and using a density function of your choice when
computing the centroid.

If you use a density function δ the function minimized by Lloyd’s relax-
ation is:

V →
∫
D
d(x, V)2δ(x)dx

4

Figure 6: Voronoi cells in a unit square domain of a random set of points
(the points are the yellow dots)

Figure 7: Lloyd’s relaxion convergeance with density function (x+ y)n

Technical details

In order to get a proof of concept faster, we chose to use a discretization of
the domain we worked on, and then compute the closest point for each point
of the discretization. After this, the density function was computed on each
point of the discretization, and then Lloyd’s relaxation was performed.

If a final product was to exist, it would work by computing the geometry
of the Voronoi cell directly, then compute the density function on the vertices
of each cell, and computing the barycenter by interpolating the density.

1.2 Application to sampling

What we wanted to do was use a transformed winding number as a den-
sity function for Lloyd’s relaxation, hoping that it could lead to uniform
sampling.

First of all, we wanted to sample the surface of the mesh. The winding
number has a value of 0.5 on the surface of the mesh. My first attempt at
choosing a density function was picking a polynomial P such that P (0) = 0,
P (0.5) = 1, P (1) = 0 and raising it to a high integer power.

5

This did not work because of the discrete winding numbers samples we
use: almost no sample was of value 0.5, and if we lowered the power, the
function would not be harsh enough to make the points converge to the
isosurface.

A better way to do this was to use the norm of the gradient of the winding
number. No matter the discrete sampling, the gradient would still be higher
around the surface, since we computed it by comparing the winding number
to the closest other samples.

After a few experiments, it was clear that while this was working, we
needed to have some control over the distribution of the values, because
a very harsh density function (here harsh means very high close to the
isosurface and very low far from it) was needed and raising the gradient
to a high power would not work past a certain point, because that would
flatten values close to holes in the field, and that would lead to artifacts in
the distribution, as shown in figure 9.

Figure 8: View of the mesh responsible for the winding number fields in
figures 9, 10 and 11. Notice the two holes on the top of the cube that come
in contact with the plane. They are the only ones relevant to the winding
fields.

The solution I came up with was changing the values so that their order
is maintained, but they are uniformly distributed in [0; 1], as shown in figure
10. In order to do so I used an algorithm analogous to histogram equalization
[Wik20a].

After this was done, we could raise every value to a very high inte-

6

(a) Power of 1 (b) Power of 5

Figure 9: Results after 20 iterations by raising the gradient norm to different
powers. Notice that raised to power 1, the points are not on the surface at
all, and raised to a power of 5, they are mostly on the surface or close to it,
and there are big clusters at the beginning of the holes.

(a) Raw gradient (b) Uniform gradient

Figure 10: Comparison of the raw and the uniform winding number gradient
norm. The distribution is in the corner.

ger power, without flattening certain regions, because the distribution was
smoother. As shown in figure 11, the result is not perfect : the clean re-
gions of the original surface are sampled, however the distribution is visibly
not even. But more importantly, the points on the region of the hole are
clustered and present in numerous layers, where we expected only one.

2 Gradient descent approach

After reaching the limits of the previous approach, we tried a completely
different idea.

7

(a) Initial situation (b) After 5 steps (c) After 20 steps

Figure 11: Sampling result

An interesting property of the 2018 algorithm for fast winding numbers,
is that it is possible to compute the winding number of a point with regards
to a set of dipoles that represent points on the implied surface.

This gives us a way to measure how good a sampling is: use the difference
between the winding number field of the surface and of the winding number
field of the sampled points. This require to also have normals associated
with the samples.

In order to get simpler formulas for dipoles, we shifted the winding num-
ber: The surface has winding 0, the inside 1, and the outside -1.

When this is the case, the winding number at x, with regards to point p
and normal vector n is:

(x− p) · n
||x− p||3

In order to get the winding number with regards to a set of dipole, we
just sum the winding number with regards to each dipole of the set. With
D the set of dipoles : ∑

(p,n)∈D

(x− p) · n
||x− p||3

From here, we can define an error function e that we will try to minimize,
with wx the winding number implied by the mesh we try to sample: if D is
a set of dipoles:

e(D) =

∫
R3

wx −
∑

(p,n)∈D

(x− p) · n
||x− p||3

2

dx

In order to minimize this function, we decided to derive it with regards
to one dipole, which would allow us to perform a gradient descent. We
chose to only try to make it work with one dipole at first on a very simple

8

field, because it would be simpler to program, and it would also make the
tweaking of the paramaters easier.

If the discretized domain is ∆, the gradient of the error with regards to
the position p of the current dipole is:

de(D)

dp
=

2e(D)

||∆||
∑
x∈∆

1

||x− p||3

(
n− 3 (x− p) · n x− p

||x− p||2

)
The gradient of the error with regards to the normal n of the current

dipole is:
de(D)

dn
=
−2e(D)

||∆||
∑
x∈∆

x− p
||x− p||3

The error for one dipole is:

e′(p, n) =

∫
wx −

(
(x− p) · n
||x− p||3

)2

dx

Its gradient relative to p is:

2e′(p, n)

||∆||
∑
x∈∆

1

||x− p||3

(
n− 3 (x− p) · n× (x− p)

||x− p||2

)
and it gradient relative to n is:

de(D)

dn
=
−2e′(p, n)

||∆||
∑
x∈∆

x− p
||x− p||3

Using this formula, I was able to test if it would converge. After a lot of
experiments, I was able to make the dipole converge on a very simple winding
field as shown in 12. For the sake of simplicity, normals were normalized at
each step of the algorithm. In order to get this result, it was very important
to make the normal converge first. On a wrong normal, the gradient of the
position is very unpredictable, and it often ejects the point from the domain.

(a) Initial situation (b) Converged normals (c) Converged positions

Figure 12: Independant optimisation of points

9

Figure 13: Origin of the winding field of figure 12

From here, we tried to optimize the points together. I made attempts
with two points, but it was very difficult to make anything converge. At
first, the movement was very erratic. After a lot of tweaking, only one point
would converge, and the other would be ”pushed” outside the domain.

The reason for that behavior is that I kept normalizing the normal vec-
tors at each step of the algorithm, which was in fact very important: the
length of the normal vector determines the strength of the dipole as shown
in figure 14. If two strong dipoles are close to each other they will increase
their winding field to a value higher than one, which will increase the error :
in order to minimize the error, if you have two strong dipoles, it is better to
place one dipole correctly and place the other one on the edge of the domain
where its effect will be minimal.

After understanding this, I tried to add the norm back as a parameter,
but that would prove way too volatile. I had minor success in optimizing
two dipoles still having a fixed normal length, just smaller, but it was clear
at that point that this approach was too volatile to be used as is.

Figure 14: Each image shows in black the surface implied by the winding
field generated by dipoles with different normal length

10

3 Gradient descent with Lloyd’s relaxation

The idea to exploit the result of the previous part was to optimize each
dipole separately, and once every dipole was on the surface, use Lloyd’s
relaxation to distribute them evenly.

In order to do so, we decided to switch the framework used for the com-
putations. Until that point, the Voronoi cells used in the Lloyd’s algorithm
were computed according to a discretization of the domain: for each point
of the discretization, we looked for the closest point, and stored the infor-
mation.

However, there are faster algorithms that are able to give you a geomet-
rical representation of the Voronoi cell. The boost of speed was going to be
needed, because my code ran very slowly before that.

I was not able to complete this part of the internship: I ran into technical
issues with the libraries I needed to use, which delayed my work, and then
I did not have any time left.

4 Conclusion

The main result of this internship is that the two methods explored do not
allow one to sample a mesh. However, I think the last approach, that I was
not able to complete, is promising and deserves further investigation.

References

[BDS+18] Gavin Barill, Neil Dickson, Ryan Schmidt, David I.W. Levin, and
Alec Jacobson. Fast winding numbers for soups and clouds. ACM
Transactions on Graphics, 2018.

[JKS13] Alec Jacobson, Ladislav Kavan, and Olga Sorkine. Robust inside-
outside segmentation using generalized winding numbers. ACM
Trans. Graph., 32(4), 2013.

[JP+18] Alec Jacobson, Daniele Panozzo, et al. libigl: A simple C++
geometry processing library, 2018. https://libigl.github.io/.

[Llo82] S. Lloyd. Least squares quantization in pcm. IEEE Transactions
on Information Theory, 28(2):129–137, 1982.

[Wik20a] Wikipedia contributors. Histogram equalization — Wikipedia, the
free encyclopedia. https://en.wikipedia.org/w/index.php?

title=Histogram_equalization&oldid=974741741, 2020. [On-
line; accessed 31-August-2020].

11

https://libigl.github.io/
https://en.wikipedia.org/w/index.php?title=Histogram_equalization&oldid=974741741
https://en.wikipedia.org/w/index.php?title=Histogram_equalization&oldid=974741741

[Wik20b] Wikipedia contributors. Winding number — Wikipedia, the
free encyclopedia. https://en.wikipedia.org/w/index.php?

title=Winding_number&oldid=966747580, 2020. [Online; ac-
cessed 30-August-2020].

Internship experience

My internship happened in the LIRIS laboratory that is attached to Uni-
versité Claude-Bernard Lyon 1.

Due to the sanitary situation, I was not able to work on site. Instead, I
had work remotely, which was made a lot easier by the tools my tutor David
Cœurjolly had set up. We discussed my work daily in a Slack chatroom, and
we had video conferences at least once a week.

I was supervised both by David and a colleague of his, Vincent Nivolier,
and I want to thank them warmly for the work they put in in order to tutor
me in these difficult conditions.

12

https://en.wikipedia.org/w/index.php?title=Winding_number&oldid=966747580
https://en.wikipedia.org/w/index.php?title=Winding_number&oldid=966747580

	Density sampling approach
	Lloyd's relaxation
	Application to sampling

	Gradient descent approach
	Gradient descent with Lloyd's relaxation
	Conclusion

